Transonic Flows about Oscillating Airfoils Using the Euler Equations

نویسنده

  • A. Jameson
چکیده

T r a n s o n i c f l ow o v e r a h a r m o n i c a l l y o s c i l l a t i n g a i r f o i l is computed by s o l v i n g t h e two-dimens ional E u l e r e q u a t i o n s i n i n t e g r a l form u s i n g t h e f i n i t e volume scheme. The d i s s i p a t i o n t e rms a r e c o n s t r u c t e d a c c o r d i n g t o t h e o r y of t o t a l v a r i a t i o n d i m i n i s h i n g schemes i n o r d e r t o o b t a i n good r e s o l u t i o n of shock f r o n t s . N o n r e f l e c t i n g boundary cond i t i o n s have been u t i l i z e d i n t h e f a r f i e l d . It is s e e n t h a t t o t a l v a r i a t i o n d i m i n i s h i n g schemes a r e w e l l s u i t e d f o r u n s t e a d y f l o w problems, w h i l e t h e f i n i t e volume f o r m u l a t i o n a l l o w s a ve ry s i m p l e t r e a t m e n t of de fo rming meshes. 1. I n t r o d u c t i o n The problem of u n s t e a d y t r a n s o n i c f l o w a b o u t o s c i l l a t i n g a i r f o i l s ha s r e c e i v e d c o n s i d e r a b l e a t t e n t i o n i n t h e l a s t decade . Many of t h e numeric a l schemes f o r s o l v i n g u n s t e a d y problems a r e based on t h e t r a n s o n i c s m a l l d i s t u r b a n c e p o t e n t i a l e q u a t i o n , which is e i t h e r l i n e a r i z e d w i t h r e s p e c t t o a s t e a d y f l ow o r is s o l v e d d i r e c t l y . B a l l h a u s and G o o r j i a n [ l ] have s o l v e d t h e n o n l i n e a r s m a l l d i s t u r b a n c e p o t e n t i a l e q u a t i o n w i t h low f r e q u e n c y a p p r o x i m a t i o n u s i n g a n a l t e r n a t i n g d i r e c t i o n e x p l i c i t scheme. To d e s c r i b e i n v i s c i d t r a n s o n i c f l ow c o r r e c t l y , t h e E u l e r e q u a t i o n s must be s o l v e d . The n u m e r i c a l s o l u t i o n of t h e E u l e r e q u a t i o n s s h o u l d p r o v i d e a n a c c u r a t e p r e d i c t i o n of t h e l o c a t i o n and s t r e n g t h of t h e shock and t h e a s s o c i a t e d wave d r ag . T h i s c a n be p a r t i c u l a r l y i m p o r t a n t i n u n s t e a d y t r a n s o n i c f l o w , where t h e changes i n a n g l e of a t t a c k c a u s e t h e shock t o move a p p r e c i a b l y . The u n s t e a d y E u l e r e q u a t i o n s have been s o l v e d by Magnus & Yosh iha r a [ 2 ] , L e r a t and S i d e s [ 3 ] and S t e g e r ( 4 1 . Magnus & Y o s h i h a r a [ 2 ] u sed a f i n i t e d i f f e r e n c e scheme of t h e Lax-Wendroff t ype . L e r a t and S i d e s [ 3 ] s o l v e d . t h e E u l e r e q u a t i o n s i n i n t e g r a l c o n s e r v a t i o n law fo rm by u s i n g t h e f i n i t e volume method of MacCormack. S t e g e r [ 4 ] u s e d a n i m p l i c i t f i n i t e d i f f e r e n c e a l g o r i t h m t o s o l v e b o t h i n v i s c i d and v i s c o u s f l ow a b o u t a i r f o i l s . D e s p i t e t h e i n t e n s i v e e f f o r t s of numerous i n v e s t i g a t o r s , t h e o b j e c t i v e of combining 1 ) High a c c u r a c y 2 ) R e s o l u t i o n of shock waves and c o n t a c t d i s c o n t i n u i t i e s 3 ) E l i m i n a t i o n of s p u r i o u s o s c i l l a t i o n s Copyright O American Institute of Aeronautics and Astronautics, Inc., 1985. All rights reserved. c o n t i n u e s t o be a n e l u s i v e g o a l . It has l o n g been r e c o g n i z e d t h a t upwind d i f f e r e n c i n g can e l i m i n a t e s p u r i o u s o s c i l l a t i o n s i n t h e ne ighborhood of shock waves a t t h e expense of low a c c u r a c y i n r e g i o n s where t h e f l ow is smooth. C e n t r a l d i f f e r e n c e schemes, on t h e o t h e r hand, produce good s o l u t i o n s i n smooth r e g i o n s , b u t a r e p rone t o o s c i l l a t i o n s i n t h e ne ighborhood of shockwaves. Stemming f rom t h e m a t h e m a t i c a l t h e o r y of s c a l a r c o n s e r v a t i o n l aws [ 5 ] , H a r t e n p roposed t h e concep t of t o t a l v a r i a t i o n d i m i n i s h i n g (TVD) schemes [ 6 ] . H a r t e n a l s o d e v i s e d second o r d e r a c c u r a t e e x p l i c i t and i m p l i c i t TVD schemes, which i n c o r p o r a t e f l u x l i m i t e r s t o c o n t r o l t h e a c t i o n of a n a n t i d i f f u s i v e t e r m [ 7 ] . Jameson [ 8 ] ha s d e r i v e d a s e m i d i s c r e t e TVD scheme f o l l o w i n g a s i m i l a r app roach which is o u t l i n e d i n t h e n e x t s e c t i o n . Van Lee r had earlier u s e d f l u x l i m i t e r s t o produce a second o r d e r a c c u r a t e scheme which would p r e s e r v e t h e monotonic i t y of an i n i t i a l l y monotone p r o f i l e (91 . I m p o r t a n t c o n t r i b u t i o n s t o t h e t h e o r y of upwind schemes have a l s o been made by Roe [10 ,11] and Oshe r 112,131. Both have d e v i s e d second o r d e r a c c u r a t e upwind schemes u s i n g f l u x l i m i t e r s . Many of t h e i d e a s on f l u x l i m i t e r s have r e c e n t l y been u n i t e d by Sweby [14 ] . Jameson & Lax [15 j have d e r i v e d c o n d i t i o n s on t h e c o e f f i c i e n t s f o r a mu l t i p o i n t d i f f e r e n c e scheme t o have t h e TVD p r o p e r t y . Jameson (161 ha s a l s o c o n s t r u c t e d a s e m i d i s c r e t e TVD scheme which u s e s t h i r d o r d e r d i s s i p a t i v e t e rms m o d i f i e d by f l u x l i m i t e r s . I n t h i s work, t h e u n s t e a d y E u l e r e q u a t i o n s a r e s o l v e d on a r e g u l a r q u a d r i l a t e r a l g r i d abou t a n a i r f o i l i n two d imens ions . The f i n i t e volume scheme i n t h e form proposed by Jameson, Schmidt and T u r k e l [17] h a s been used . S e c t i o n 2 p r e s e n t s t h e s e m i d i s c r e t e TVD scheme f o r t h e s c a l a r conse r v a t i o n law. The i n t e g r a l form of t h e E u l e r e q u a t i o n s f o r a moving mesh and t h e f i n i t e volume scheme a r e p r e s e n t e d i n S e c t i o n 3 . S e c t i o n 4 d e a l s w i t h t h e e x t e n s i o n of TVD schemes t o a sy s t em of c o n s e r v a t i o n laws. S e c t i o n 5 d i s c u s s e s t h e t ime s t e p p i n g s t r a t e g y . I n S e c t i o n 6 we d i s c u s s t h e boundary c o n d i t i o n s i n t h e f a r f i e l d and on t h e a i r f o i l . F i n a l l y , S e c t i o n 7 p r e s e n t s t h e r e s u l t s f o r a v a r i e t y of one-d imens ional problems and t h e o s c i l l a t i n g a i r f o i l . 2. Total Variation Diminishing Scheme for a ScalarConservation Law Fi = fi + gi in which gi is an anti-diffusive flux which approximates a u A x a , ax and thus cancels the first order error. It is necessary to limit gi, however, to prevent the possibility of (gi+l-gi)/(ui+l-~i) becoming unbounded. For this purpose define For the scalar conservation law a * + f(u) = 0 at ax (1) it is well known that the total variation can never increase. Correspondingly it seems desirable that the discrete total variation m and where B is an averaging function which limits the magnitude attainable by (gi+l gi)/(ui+l ui) and satisfies the condition of a solution of a difference approximation to (1) should not increase. It can be shown that a semidiscretization will have the TVD property if it can be cast in the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transonic Turbulent Flow Simulation using Pressure-Based Method and Normalized Variable Diagram

A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria for this procedure are determined from Normalized Variable diagram (NVD) scheme.The procedure incorporates the ε−k eddy-viscosity turbulence model. The algorithm is tested for inviscid and turbulent transonic ...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Efficient Solutions of the Euler and Navier-stokes Equations for External Flows

This invited paper presents efficient solutions of the Euler and Navier-Stokes equations based on finite difference and finite volume formulations. They were obtained with several methods recently developed for the efficient analysis of steady and unsteady external flows. (i) A biased-flux method based on an explicit finite volume formulation is first presented for the solution of the Euler equ...

متن کامل

Adaptation of Structured Grid for Supersonic and Transonic Flows

Two distinct redistribution grids - adaptation techniques, spring analogy and elliptic grid generator are applied to two-dimensional steady, inviscid, shocked flows, and the ability of each technique is examined and compared. Euler equations are solved base on Roe's Reimann solver approach to simulate supersonic flow around a sphere, transonic flow about an airfoil and supersonic flow in a symm...

متن کامل

Non-unique Numerical Solutions and Their Stability of the Euler Equations for Transonic Flow over Airfoils

Multiple numerical solutions of inviscid transonic flow over several airfoils exist at certain Mach number and angle of attack. Global linear stability analysis of the multiple solutions is conducted in this paper. Linear perturbation equations of the Euler equations around a steady-state solution are formed, an eigenvalue problem is then constructed using the modal analysis approach, then it i...

متن کامل

Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils and Oscillating Flaps Using Dynamic Mesh

This paper presents an algorithm for unsteady transonic aerodynamic analysis by solving the two-dimensional unsteady Euler equations using a dynamic mesh algorithm. The driving algorithm is an upwind biased implicit second order accurate cell-centered finite volume scheme. The spatial discretization technique involves a naturally dissipative flux-split approach that accounts for the local wave ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004